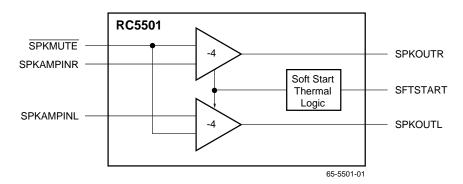
RC5501

4 Watt Stereo Sound Driver

Features

- Up to 4W/channel
- Drives 8Ω and 4Ω non-powered speakers
- NO-POP during power-up/power-down and mute
- Internal thermal limiting circuitry
- Total Harmonic Distortion < 0.1%


Applications

- · Multimedia PC motherboards and add-in sound cards
- Companion chip to sigma-delta sound codecs
- Sound Channel back-end in set-top boxes

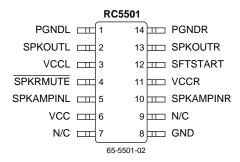
Description

The RC5501 is a stereo power amplifier used for directly powering speaker and headphone sets.

Block Diagram

PRODUCT SPECIFICATION RC5501

Functional Description


The RC5501 stereo sound driver is an audio device that can be used on PC motherboards and add-in sound cards. It consists of stereo output drivers for headphone or speakers with a mute feature and circuitry that eliminates popping at power on, power off, mute enable, and mute disable.

The output drivers can deliver up to 2 Watts peak and 4 Watts peak into 8Ω and 4Ω speakers, respectively, from a 12V source. The drivers use class AB amplifiers and maintain a

low bias current. To help prevent turn-on speaker pop, a delay is provided to these output drivers to allow settling before speaker activation. The time constant is user-defined through an external capacitor (CDELAY) on the SFTSTART pin.

The thermal limiting circuitry activates if the chip temperature typically exceeds 150°C.

Pin Assignments

Pin Definitions

Pin Name	Pin Number	Pin Function Description	
PGNDL	1	Left speaker ground.	
SPKOUTL	2	Left speaker output.	
VCCL	3	Left speaker 12V power supply.	
SPKRMUTE	4	Speaker mute.	
SPKAMPINL	5	Left channel power amp input.	
VCC	6	12V power supply input.	
N/C	7, 9	No connection.	
GND	8	Ground.	
SPKAMPINR	10	Right channel power amp input.	
VCCR	11	Right speaker 12V power supply.	
SFTSTART	12	Soft start timing capacitor.	
SPKOUTR	13	Right speaker output.	
PGNDR	14	Right speaker ground.	

Absolute Maximum Ratings

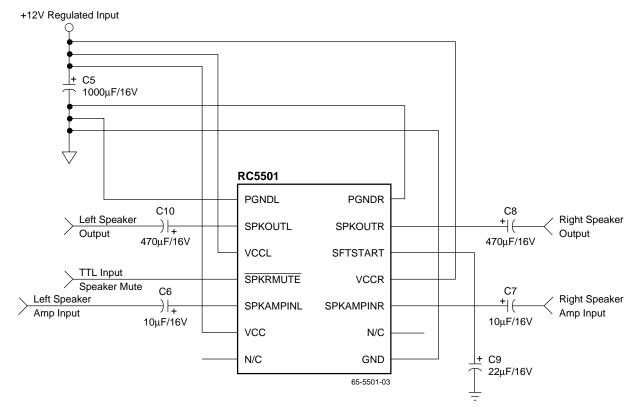
(beyond which the device may be damaged)¹

Parameter		Min	Тур	Max	Units
VCC VCCR VCCL	Power supply voltage			13.2	V

Note:

Operating Conditions

Parameter		Conditions	Min	Тур	Max	Units
VCC VCCL VCCR	Power Supply		11.2	12	12.8	V
VIH	Input Voltage Logic High		2			V
VIL	Input Voltage Logic Low				0.8	V
	Ambient Temperature		0		70	°C
Tc	Maximum Operation Die Temperature	Overthermal Protection		150		°C
Itotal	Power Supply Current	No load		19	25	mA
ESD	ESD Threshold	Human Body Model	2000			V


Electrical Characteristics

 $VCC = VCCL = VCCR = 12V \pm 6\%$, unless otherwise specified.

Parameter Speaker Driver		Conditions	Min	Тур	Max	Units
		$f = 1KHz$, $RL = 8\Omega$ unless otherwise specified				
Zin	Input Impedance		100			ΚΩ
Av	Voltage Gain	Vin = 0.5 Vrms	-3.80	-4.0	-4.20	V/V
L&R Av	Left and Right Gain Matching	Vout = 4Vp-p		0.5		%
Vo	Output Voltage	$RL = 4\Omega$ or 8Ω , $VCC = 12V$		±4		V
SNR	Signal to Noise Ratio	Input Referenced		85		dB
Ро	Power Output Per Channel Peak	$RL = 4\Omega$, $VCC = 12V$ (See Figure 1)		4		W
CS	Channel Separation L/R Input Referenced	Vin = 0.5 Vrms	66			dB
THD	Total Harmonic Distortion	fo = 1KHz, Po = 50mW		0.1		%
Noise		20Hz to 20kHz, A-Weighted		4		μVrms
PSRR	Power Supply Rejection Ratio Input Referenced	f = 100Hz, ΔVcc = 1.6Vp-p	70	80		dB
Soft Star	t			•	•	•
Delay	Anti-Pop Ramp-Up and Ramp-Down time	No Pop condition CDELAY = 22μF on SFTSTART		2		sec

^{1.} Functional operation under any of these conditions is NOT implied. Performance is guaranteed only if Operating Conditions are not exceeded.

Applications Discussion

Notes:

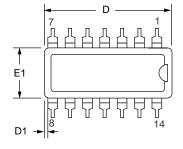
- 1. 4 watt power represents the peak of the audio level and cannot be sustained without correct package thermal considerations. The average audio signal can be sustained by the RC5501 without extra thermal considerations.
- 2. To improve the thermal resistance of the PDIP package, a heat sink can be used.

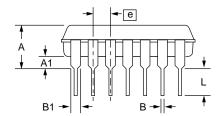
Figure 1. 4 Ohm Speaker, 4 Watt Application or 8 Ohm Speaker, 2 Watt application

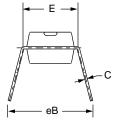
တ

Notes:

PRODUCT SPECIFICATION


Mechanical Dimensions


14 Lead Plastic DIP Package


Symbol	Inches		Millim	Notes	
Syllibol	Min.	Max.	Min.	Max.	Notes
Α	_	.210	_	5.33	
A1	.015		.38	_	
A2	.115	.195	2.93	4.95	
В	.014	.022	.36	.56	
B1	.045	.070	1.14	1.78	
С	.008	.015	.20	.38	4
D	.725	.795	18.42	20.19	2
D1	.005		.13	_	
E	.300	.325	7.62	8.26	
E1	.240	.280	6.10	7.11	2
е	.100 BSC		2.54 BSC		
eВ	_	.430	_	10.92	
L	.115	.200	2.92	5.08	
N	14		1	4	5

Notes:

- 1. Dimensioning and tolerancing per ANSI Y14.5M-1982.
- 2. "D" and "E1" do not include mold flashing. Mold flash or protrusions shall not exceed .010 inch (0.25mm).
- 3. Terminal numbers are shown for reference only.
- 4. "C" dimension does not include solder finish thickness.
- 5. Symbol "N" is the maximum number of terminals.

PRODUCT SPECIFICATION RC5501

Ordering Information

Product Number	Package
RC5501N	14 PDIP

The information contained in this data sheet has been carefully compiled; however, it shall not by implication or otherwise become part of the terms and conditions of any subsequent sale. Raytheon's liability shall be determined solely by its standard terms and conditions of sale. No representation as to application or use or that the circuits are either licensed or free from patent infringement is intended or implied. Raytheon reserves the right to change the circuitry and any other data at any time without notice and assumes no liability for errors.

LIFE SUPPORT POLICY:

Raytheon's products are not designed for use in life support applications, wherein a failure or malfunction of the component can reasonably be expected to result in personal injury. The user of Raytheon components in life support applications assumes all risk of such use and indemnifies Raytheon Company against all damages.

Raytheon Electronics Semiconductor Division 350 Ellis Street Mountain View CA 94043 415 968 9211 FAX 415 966 7742